Tight sign-central matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tight sign-central matrices

A real matrix A is called sign-central if the convex hull of the columns of à contains the zero vector 0 for every matrix à with the same sign pattern as A. A sign-central matrix A is called a minimal sign-central matrix if the deletion of any of the columns of A breaks the signcentrality of A. A sign-central matrix A is called tight sign-central if the Hadamard (entrywise) product of any two c...

متن کامل

Symmetric alternating sign matrices

In this note we consider completions of n×n symmetric (0,−1)-matrices to symmetric alternating sign matrices by replacing certain 0s with +1s. In particular, we prove that any n×n symmetric (0,−1)-matrix that can be completed to an alternating sign matrix by replacing some 0s with +1s can be completed to a symmetric alternating sign matrix. Similarly, any n × n symmetric (0,+1)-matrix that can ...

متن کامل

Affine Alternating Sign Matrices

An Alternating sign matrix is a square matrix of 0’s, 1’s, and −1’s in which the sum of the entries in each row or column is 1 and the signs of the nonzero entries in each row or column alternate. This paper attempts to define an analogue to alternating sign matrices which is infinite and periodic. After showing the analogue we define shares desirable cahracteristics with alternating sign matri...

متن کامل

Sign Pattern Matrices that Admit P0 Matrices

A P0-matrix is a real square matrix all of whose principle minors are nonnegative. In this paper, we consider the class of P0-matrix. Our main aim is to determine which sign pattern matrices are admissible for this class of real matrices. Keywords—Sign pattern matrices, P0 matrices, graph, digraph

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2003

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(03)00460-9